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Effective normalization of complexity measurements for epoch length and sampling frequency
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The algorithmic complexity of a symbol sequence is sensitive to the length of the message. Additionally, in
those cases where the sequence is constructed by the symbolic reduction of an experimentally observed wave
form, the corresponding value of algorithmic complexity is also sensitive to the sampling frequency. In this
contribution, we present definitions of algorithmic redundancy that are sequence-sensitive generalizations of
Shannon’s original definition of information redundancy. In contrast with algorithmic complexity, we demon-
strate that algorithmic redundancy is not sensitive to message length or to observation scale~sampling fre-
quency! when stationary systems are examined.
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I. INTRODUCTION

While there are many different kinds of complexity me
sures@1–4#, they all share the common property of providin
a quantitative assessment of the structure of a symbol
quence. Complexity measures complement an examina
of the symbol distribution by identifying sequence-sensit
patterns that would be destroyed by a random shuffle. I
previous publication@5#, we have constructed an eight celle
taxonomic classification of complexity measures based o
sequence of three dichotomous classifiers:~i! randomness
finding vs rule finding,~ii ! probabilistic vs non-probabilistic
and~iii ! formula based vs model based. Randomness find
measures of complexity give the highest value of complex
to random sequences. The original definitions of symbo
complexity introduced by Kolmogorov@6# and Chaitin@7#
were of this type. An alternative assessment of complexit
one that attempts to establish a quantitative characteriza
of the rules used to generate a symbol sequence. Exampl
rule finding measures of complexity include forbidden wo
complexity@8–10#, effective measure complexity@3#, and«-
machines@11#.

Probabilistic measures of complexity, for example, me
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entropy@12# and effective measure complexity@3#, are sen-
sitive to both the number of distinct subgroups~words! in the
message and the frequency of their appearance. In our
menclature we describe a complexity measure as being
probabilistic if it depends only on the number of distin
words and is insensitive to the frequency of their appearan
Examples include topological entropy@13# and the previ-
ously cited forbidden word complexities. Formula-bas
measures of complexity are those like topological entro
metric entropy, and effective measure complexity that can
expressed in an equation. An alternative is one that c
structs a model of the symbol sequence, for example, a se
of instructions that permit the reconstruction of the origin
symbol sequence, and assigns a value of complexity ba
on the size of the model. Examples of model-based comp
ity include Kolmogorov-Chaitin complexity@6,7# and the
Lempel-Ziv complexity@14#.

This contribution focuses on a specific class of compl
ity measure, the algorithmic complexity that in this class
cation system would be an example of a non-probabilis
model based, randomness finding measure of comple
Two representative examples are considered. The first is
Lempel-Ziv measure of complexity@14#. The second, the
context free grammar complexity, has been described e
where@15,16#. In both cases an upper bound of the comple
ity of a symbol sequence is found by first constructing
instruction sequence that can reproduce the message.
complexity is based on a measure of the length of that

,
,
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P. E. RAPPet al. PHYSICAL REVIEW E 64 016209
FIG. 1. Algorithmic complex-
ity as a function of data set siz
for three model systems. Averag
values were calculated from five
independent determinations ob
tained with different initial condi-
tions. The corresponding symbo
sequences were binary partition
about the median. System specifi
cations are given in the text. Th
upper box shows the Lempel-Ziv
complexity. The lower box dis-
plays the context free gramma
complexity.
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struction set. A brief didactic presentation of each definit
is given in the appendixes.

Viewed in isolation, a single measure of algorithmic co
plexity provides limited information. A normalization tha
could facilitate comparisons between different measurem
would be helpful. The process of constructing an effect
normalization of complexity turns on two problems. First,
will be shown presently, the value of algorithmic complex
increases with the length of the message. An improved m
sure should be invariant with respect to message length
vided that the underlying dynamical process was station
throughout the observation period. Second, the complexit
symbol sequences constructed from observations of con
ous dynamical systems is sensitive to sampling frequen
This problem should also be addressed by a successful re
malization.

We are, therefore, seeking a measure that would retain
essential features of algorithmic complexity in providing
sequence-sensitive measure of randomness, but would
depend on how long or how often observations are ma
Finally, a means of assessing the uncertainty of the meas
ment would be of particular value in the analysis of expe
mental data.

II. SENSITIVITY TO EPOCH LENGTH

Figure 1 shows the values of complexity obtained fro
three model systems. In the first example, random num
uniformly distributed on~0,1! were calculated with a Park
Miller random number generator that incorporated a Ba
Durham shuffle@17–19#. The resulting sequence of re
numbers is reduced to a binary symbol sequence by p
tioning the random numbers about the median. A sym
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‘‘0’’ is assigned if the number is less than or equal to t
median value, and symbol ‘‘1’’ is assigned if the number
greater than the median. In this example, the median and
mean are essentially identical. However, it should be no
that in those instances where they are significantly differe
a partition about the median should be used rather tha
partition about the mean@20#.

The Hénon data sets used to generate the results in Fi
were generated from the He´non system using different initia
conditions and the parametersa51.4 andb50.3,

xt11512axt
21yt ,

yt115bxt .

As in the previous case, a binary symbol sequence was
erated about the median.

The Lorenz data sets were generated from the ordin
differential equation

dx/dt510~x2y!,

dy/dt5x~282z!2y,

dz/dt5xy2~8/3!z.

The system was integrated with a sixth order Runge-Ku
Huta algorithm@21# with a step length ofDt50.01.

The values of complexity displayed in Fig. 1 were o
tained by averaging five determinations generated from
ferent initial conditions. The mean values are displayed w
the corresponding standard deviations, which were typic
on the order of 2% of the value of complexity. For both t
Lempel-Ziv complexity and the context free grammar co
9-2
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EFFECTIVE NORMALIZATION OF COMPLEXITY . . . PHYSICAL REVIEW E64 016209
FIG. 2. Algorithmic complex-
ity divided by Lm , the number of
symbols in the message, for th
model systems of Fig. 1. The up
per box shows results obtaine
with the Lempel-Ziv definition of
complexity. The lower box dis-
plays results obtained with the
context free grammar complexity
Average values were calculate
from five independent determina
tions obtained with different ini-
tial conditions.
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plexity, algorithmic complexity is seen to increase monoto
cally with data set size. The two measures were found to
highly correlated. The Pearson linear correlation coeffici
is R50.998. The Spearman’s rank correlation isr s50.994
and the Kendall nonparametric correlation coefficient ist
50.963.

The simplest possible normalization for data set s
would be obtained by dividing the value of complexity b
the length of the messageLm . The results in Fig. 2 show tha
this does not result in anLm-independent measure.

An alternative can be constructed by generalizing
definition of redundancy introduced by Shannon@22#. Sup-
pose a message ofLm symbols is constructed from an alph
bet of Na characters wherepi is the probability of thei th
character. The entropy of the message,Hm , is defined as

Hm52(
i 51

Na

pi log2 pi .

The maximum entropy is obtained when the sequence
symbols is equiprobable, that ispi51/Na for all i. Hmax, the
maximum possible value of entropy, is given byHmax
5log2 Na

Shannon defines informational redundancyRS as

RS512Hm /Hmax.

If pi51/Na for all i, then Hm5Hmax, and RS50; that is,
when the sequence is equiprobable, the redundancy o
message is zero. The observation of each symbol in the m
sage is informative. Alternatively, supposepj51 for somej
and thatpi50 for all iÞ j . In this case,Hm50; no informa-
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tion is obtained by observing the next symbol in the s
quence since it is always thej th symbol, andRS51.

A generalization of the idea of redundancy to sequen
sensitive measures of complexity is implicit in the content
Kolmogorov’s 1965 paper@6#. A sequence-sensitive redun
dancyRK can be defined by:

RK512Cm /Lm ,

where Cm is the algorithmic complexity of the messag
Chavoya-Aceves, Garcia de LeBarrera, and Jime´nez-
Montaño @23# defined a redundancy for complexity measu
ments as

R512Cm /Cm8 ,

where

Cm8 5min$Lm ,@ 1
2 ~Lm11!12Na

2#%.

However, whenLm is much greater thanNa , as is the case in
the examples considered in this paper,Cm8 'Lm/2, and the
Chavoya-Aceves definition is essentiallyRK . RK as a func-
tion of data set size is shown in Fig. 3 for both Lempel-Z
complexity and the context free grammar complexity.
expected given the results presented in Fig. 2,RK changes
with data set size. It is also important to note thatRK is not
equal to zero for random numbers, which is contrary to
spirit of the definition of redundancy.

For the specific case of the Lempel-Ziv complexity me
sure, an additional possible normalization should be con
ered. Lempel and Ziv@14# show that their definition of com-
plexity, denotedCLZ , is bounded byN1 ,
9-3
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P. E. RAPPet al. PHYSICAL REVIEW E 64 016209
FIG. 3. RK , redundancy con-
structed by normalizing agains
data set length, for the model sys
tems of Fig. 1. Note that the re
dundancy obtained with random
sequences is not zero. The upp
box shows results obtained wit
the Lempel-Ziv definition of com-
plexity. The lower box displays
results obtained with the contex
free grammar complexity. Aver-
age values were calculated from
five independent determination
obtained with different initial con-
ditions.
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CLZ,N15
NData

~12«N!loga NData
,

where to clarify notation we seta5Na , the number of sym-
bols in the alphabet.

«N52$11 loga loga~aNData!%/ loga NData

If NData is large,«N is small and a simplified normalizatio
againstNData/loga NData can be considered, as was done
Zhanget al. @24#. CLZ /N1 is shown in Fig. 4 and is seen t
be sensitive to the value ofNData.

A more successful definition of redundancy defined
analogy with Shannon’sRS is

R0512Cm /^C0&.
01620
y

As before,Cm is the complexity of the original message.C0

is the complexity of a randomly shuffled equiprobable sy
bol sequence of the same length wherepi51/Na . The sub-
script ‘‘0’’ is used to indicate that this is the complexity of
random shuffle surrogate data set. As defined here, su
gates are not constructed by simply shuffling the origi
symbol sequence. The distribution of the original sequenc
not necessarilypi51/Na . ^C0& denotes the mean value o
complexity found by averaging values from several indep
dently constructed surrogates. The number of surrogates
should be used to estimateR0 depends on the signal-to-nois
ratio of the original data. This question can be addres
empirically by increasing the number of surrogates unti
stable value ofR0 is obtained. Test calculations indicate
that for the data sets examined in this paper, the value
r
s
e
e

-

FIG. 4. Lempel-Ziv complex-
ity normalized against the uppe
boundN1 presented in the text a
a function of data set size for th
model systems of Fig. 1. Averag
values were calculated from five
independent determinations ob
tained with different initial condi-
tions.
9-4
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EFFECTIVE NORMALIZATION OF COMPLEXITY . . . PHYSICAL REVIEW E64 016209
FIG. 5. R0 , the redundancy
obtained by normalizing agains
random equiprobable binary sym
bol sequences.R0 is shown for the
three model systems of the pre
ceding diagrams, and for a con
stant sequence constructed by r
peating a single symbol. The
upper box shows results obtaine
with the Lempel-Ziv definition of
complexity. The lower box dis-
plays results obtained with the
context free grammar complexity
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redundancy obtained with ten surrogates were within 1%
the values obtained with 50 surrogates. The values prese
here were obtained with ten surrogates. Measures of c
plexity such as algorithmic complexity give the highest v
ues to random sequences.^C0& is, therefore, an empirica
estimate ofCmax andR0 is a sequence-sensitive generaliz
tion of RS .

It is possible to estimate the uncertainty ofR0 as below:

DR0
25S ]R0

]Cm
D 2

DCm
2 1S ]R0

]^C0&
D 2

DC0
25

DCm
2

^C0&
2 1

Cm
2

^C0&
4 DC0

2,

whereDC0 is the standard deviation of averaged surrog
complexities found when calculatinĝC0&. In Fig. 5, DCm
can be estimated empirically by multiple determinations
Cm from different initial conditions. In some instances, f
example, the examination of experimental data, multiple
terminations may not be available. In those cases,DCm can
be approximated by determiningCA , the complexity of the
first half of the message, andCB , the complexity of the
second half of the message. An approximation ofDCm is
given by

DCm5
uCA2CBu

~ uCAu1uCBu!/2
Cm ,

where, as before,Cm is the complexity of the original mes
sage.

R0 as a function of data set size is shown for the th
model systems in Fig. 5. The results obtained with sym
sequences consisting of a single repeated symbol are
shown and labeled as ‘‘Constant.’’ It is seen thatR0 is
largely unchanged as the size of the data set is increa
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Thus, the first of our objectives has been met. The definit
of R0 also produces results consistent with our intuiti
sense of the word redundancy. Random sequences have
redundancy. Every observation of a random sequence
vides information. In contrast, the redundancy of a const
sequence is 1. A constant symbol sequence is comple
redundant. Lorenz and He´non show intermediate values wit
the Hénon system having a lower redundancy; that is, it a
pears more random. This is also consistent with our exp
tations since the He´non system is a map that rapidly distrib
utes itself over its attractor. Each point is typically we
displaced from its predecessor. In contrast, the Lorenz
tem is a flow; displacement on the attractor with each s
cessive observation is smaller.

III. SENSITIVITY TO SAMPLING INTERVAL

The calculations presented in the previous section indic
that R0 is essentially constant for stationary systems as
number of data points~the observed epoch! is increased.
However, during the examination of continuous wave form
for example, computed solutions of the Lorenz equations
experimental measurements of fluid flow, there is anot
issue. The investigator faces an operational question: h
often should I sample the signal? WhileR0 provides an ef-
fective normalization for epoch length~given assumptions o
stationarity!, it is sensitive to the sampling frequency. This
shown in Figs. 6 and 7. The Lorenz system was integrate
different sampling intervals~Dt50.01, 0.02, 0.04, and 0.08!.
The corresponding number of data points in each data s
8192, 4096, 2048, and 1024. Thus the epoch length is
same in all four cases. When compared across constan
ochs, complexity is seen to decrease withDt ~Figs. 6 and 7,
9-5
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P. E. RAPPet al. PHYSICAL REVIEW E 64 016209
FIG. 6. An examination of the
Lorenz system for constant-epoc
time series~100 time units!. The
sampling interval, and hence th
size of the data sets, changes wi
each case. In the top panel th
Lempel-Ziv complexity is dis-
played. The middle panel show
R0 , the redundancy calculate
with equiprobable randomly
shuffled surrogates using th
Lempel-Ziv definition of com-
plexity. The third panel displays
R1 , the redundancy calculated us
ing random phase surrogates an
Lempel-Ziv complexity. The aver-
ages of five determinations ob
tained with different initial condi-
tions are shown.
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top panels!. This might suggest that the dynamical behav
of the observed data is less disordered for larger value ofDt.
But in fact, decreasing complexity is a result of decreas
number of data points. The second panel of Figs. 6 an
showsR0 as a function ofDt. Redundancy decreases asDt
increases; that is, the observed symbol sequence bec
more random asDt increases. Upon reflection, this is as
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should be. AsDt increases, the chaotic Lorenz system de
rrelates and the relationship between successive observa
becomes more disordered.

Normalization for both sampling interval and data set s
can be constructed by using surrogates of lengthLm ~the
length of the original message! that reflect the time scale o
the observational process. The easiest way to do this is
h
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FIG. 7. An examination of the
Lorenz system for constant-epoc
time series~100 time units!. The
sampling interval, and hence th
size of the data sets, changes wi
each case. In the top panel th
context free grammar complexity
is displayed. The middle pane
showsR0 , the redundancy calcu
lated with equiprobable randomly
shuffled surrogates using gramm
complexity. The third panel dis-
plays R1 , the redundancy calcu
lated using random phase surro
gates and grammar complexity
The averages of five determina
tions obtained with different ini-
tial conditions are shown.
9-6
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EFFECTIVE NORMALIZATION OF COMPLEXITY . . . PHYSICAL REVIEW E64 016209
FIG. 8. R0 , the redundancy
obtained by normalizing agains
random equiprobable binary sym
bol sequences and the Lempel-Z
complexity measure.R0 is shown
for two of the model systems o
the preceding diagrams. Normall
distributed Gaussian noise of zer
mean was added to reduce th
signal-to-noise ratio.
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random phase surrogates, which are also referred to as A
rithm 1 surrogates@25,26#. Random phase surrogates a
constructed by calculating the Fourier transform of the or
nal time series, randomizing the phases and calculating
inverse transform. The inverse transform is the surrog
The surrogates and the original time series have the s
power spectra, and thus by the Wiener-Khinchin theore
they have the same autocorrelation function.

The complexity of random phase surrogates is calcula
in the same manner as the complexity of the original ti
series. The surrogate is partitioned into a symbol seque
using an alphabet ofNa characters. The partition is about th
median for the caseNa52. An equiprobable generalized me
dian partition~pi51/Na , for all i! is used ifNa.2. Let ^C1&
denote the mean value of complexity obtained from Alg
rithm 1 ~random phase! surrogates. The random phase redu
dancy is defined as

R1512Cm /^C1&.

The value of complexity obtained with a random phase s
rogate is the maximum value of complexity compatible w
the original signal’s spectrum. The third panel of Figs. 6 a
7 showsR1 as a function of sample interval. It is insensitiv
to changes in both data set size and sampling frequency

Recall that algorithmic complexity is a measure that giv
the greatest value of complexity to random sequenc
Therefore, in general̂C0& is greater than̂C1&, and it fol-
lows thatR0.R1 . This is confirmed for the specific examp
of the Lorenz system by comparing the second and th
panels of Figs. 6 and 7. The introduction ofR1 indicates that
there is no absolute definition of algorithmic redundan
Redundancy can only be defined with respect to the un
lying null hypothesis of the surrogates. In the case ofR0 , the
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null hypothesis holds that the original signal is indistinguis
able from noise. In the case ofR1 , the null hypothesis holds
that the original signal is indistinguishable from linearly fi
tered noise@25,26#.

IV. SENSITIVITY TO NOISE

As indicated in the Introduction, both of the complexi
measures used in these computations are randomn
seeking measures. That is, they give the highest value
complexity to randomly constructed sequences. There
the complexity is expected to increase~the redundancy
should decrease! as the stochastic component of a signal
increased.

This expectation is verified in the calculations presen
in Fig. 8. Two of the three model systems considered in
previous sections, the Lorenz equations and the He´non dif-
ference equations, were used. Normally distributed no
generated by the previously described Park-Miller rand
number generator of zero mean was added to the orig
signals. The variance of the added noise was adjusted to
signal-to-noise ratios of 10, 5, and 0 dB. Ten realizatio
using different seeds to the random number generator w
produced for each case. The figure displays the averag
these ten determinations. The redundancy decreases a
signal-to-noise ratio decreases. The invariance of redunda
with respect to data set length, however, is not affected
noise.

V. CONCLUSIONS

The results suggest that for stationary systems, appro
ately defined versions of algorithmic redundancy are rob
to changes in message length and sampling frequency.
9-7
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P. E. RAPPet al. PHYSICAL REVIEW E 64 016209
dundancy may therefore be a useful measure of the intri
structure of a symbol sequence that facilitates comparis
between cases. This is particularly important for longitudi
studies in which the object is to assess long term change
dynamical systems.
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APPENDIX A: THE LEMPEL-ZIV COMPLEXITY

According to Kolmogorov, the algorithmic complexity o
a sequence of symbols is given by the number of bits of
shortest computer program that can generate that sequ
@6#. However, a general algorithm that determines suc
program cannot be given@27,7#. Instead, Lempel and Ziv
developed a complexity measure that does not necess
calculate the lengthn of the shortest program that generate
given symbol sequence, but rather a numberc(n), which is a
useful upper bound of this length@14,28,29#.

The Lempel-Ziv approach associates the complexity o
symbol sequence with the sequential appearance of new
terns within that sequence. They present an estimate o
complexity of a finite sequence from the point of view of
learning machine that, as it scans an-digit sequenceS
5s1s2¯sn from left to right, adds a new word to it
memory every time it encounters a substring not previou
observed. The size of the compiled vocabulary, and the
at which new words are encountered, serve as the basi
their complexity measure.

Let us introduce some definitions that are needed for
discussion:A denotes the alphabet set~i.e., the symbols tha
are used to compose the sequence!; S denotes a finite length
symbol sequence formed byA, whose complexity is to be
measured;S( i , j ) indicates a substring ofS that starts at po-
sition i and ends at positionj, that is, wheni< j , S( i , j )
5si ,si 11 ,¯sj and when i . j , S( i , j )5$ %, the null set;
V(S) the vocabulary of a sequenceS. It is the set of all
substrings, or words, S( i , j ) of S, ~i.e., S( i , j ) for i
51,2, . . .n; j > i !. For example, LetA5$0,1%, and S
5001, we then have

V~S!5$0,1,00,01,001%.

The Lempel-Ziv algorithm is essentially the parsing of t
original sequenceS into

H~S!5S~1,h1! % S~h111,h2!

% S~h211,h3!¯% S~hm2111,hm!,
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which is called the production history ofS. The symbol%
denotes the concatenation operator. Them words Hi(S)
5S(hi 2111,hi) i 51,2,...,m, are called the components ofS.
The complexityc(n) is the positive integer equal to the num
ber of substrings, or components, required by this proc
Understanding the procedure used by Lempel-Ziv to prod
a unique production history constitutes an understanding
their algorithm.

As was stated earlier, this process follows a left-to-rig
scan of a sequenceS. A substringS( i , j ) is compared to the
vocabulary that is comprised of all substrings ofS up to j
21, that is, V„S(1,j 21)…. If the substring is present in
V„S(1,j 21)…, then S( i , j )→S( i , j 11), and V„S(1,j 21)…
→V„S(1,j )…, and the process repeats. If the substring is
present, then a dot is placed afterS( j ) to indicate the end of
a new componentS( i , j )→S( j 11,j 11) that is the single
symbol in the j 11 position, and V„S(1,j 21)…
→V„S(1,j )…, and the process continues. This parsing ope
tion begins withS(1,1) and continues untilj 5n, wheren is
the length of the symbol sequence.

Consider the following sequence of zeros and ones:

S50100011010010011101100.

We begin with S(1,1)50, and V„S(1,0)…5$ %. Since the
substringS(1,1) is not found in the vocabularyV„S(1,0)…,
we place a dot after the first element,S(1,1)→S(2,2)51,
andV„S(1,0)…→V„S(1,1)…5$0%. After this first step our se-
quence becomes

S50•100011010010011101100.

Now S(2,2)51, which is not found in the vocabular
V„V(1,1)…5$0%, so we place a dot after the second eleme
S(2,2)→S(3,3), andV„S(1,1)…→V„S(1,2)…5$0,1,01%. Af-
ter this second step our sequence becomes

S50•1•00011010011101100.

S(3,3)50, is found inV„S(1,2)…, thereforeS(3,3)→S(3,4)
and V„S(1,2)…→V(S(1,3)…5$0,1,01,10,010%. S(3,4) is not
found in the vocabulary so we place a dot after the fou
element,S(3,4)→S(5,5) andV(S(1,3)…→V(S(1,4)…. At the
completion of our parsing process we get

S50•1•00•011•01001•00111•01100•.

~A dot is always placed after the last element in the sym
sequence.! The Lempel-Ziv complexity in this example
would bec(n)57.

APPENDIX B: THE CONTEXT FREE GRAMMAR
COMPLEXITY

This measure was constructed by Ebeling and Jime´nez-
Montaño @15#. The description given here follows the pre
sentation in Rappet al. @30# The definition is described mos
effectively by considering a specific application. In this e
ample a binary symbol alphabet is used, but the definitio
applicable to alphabets of arbitrary size. Consider sym
sequenceM

M50100011010010011101100.
9-8
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The sequence is searched for repeated symbol pairs. The
0 1 is repeated six times. A new symbola501, is defined
and substituted into messageM resulting in its compression

a501,

M5a00a1a0a0a11a100.

M is again scanned for repeated pairs. The symbol paira 0 is
repeated three times and is replaced by symbolb,

a501,

b5a0,

M5b0a1bba11a110.

The symbol paira1 is repeated three times in the restatem
of M. It is replaced by symbolc,

a501,

b5a0,

c5a1,

M5b0cbbc1c10.
-

.

01620
air

t

The search for repeated pairs has been exhausted. In
general case, the symbol sequence would be searche
repeated triples, which would be replaced by new symb
Repeated four-letter elements would then be replaced, an
on. In the case of the present example, there are no hi
order repeats. The compression has converged.

Using the definition ofa, b, andc and the restatement o
M, it is possible to reconstruct the original sequence exac
In this example, the complexity of the original message
equal to the number of elements in its restatement. Sym
a, b, andc each consist of two symbols. MessageM consists
of ten symbols. Thus, using this definition of complexity,

~Complexity of M !521212110516.

Ebeling and Jime´nez-Montan˜o @15# consider generaliza
tions to include messages in which a single symbol is
peated three or more times in a row. When this occurs,
sequence of repeated symbols is replaced by its expone
representation. For example,a a a abecomesa4. Under their
definition, the exponent contributes to complexity logarit
mically. The sequencea4 would contribute one bit in recog
nition of symbola and log2 4 in recognition of the exponen
4. Additional didactic examples are given in the earlier l
erature@30,31#.
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