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Effective normalization of complexity measurements for epoch length and sampling frequency
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The algorithmic complexity of a symbol sequence is sensitive to the length of the message. Additionally, in
those cases where the sequence is constructed by the symbolic reduction of an experimentally observed wave
form, the corresponding value of algorithmic complexity is also sensitive to the sampling frequency. In this
contribution, we present definitions of algorithmic redundancy that are sequence-sensitive generalizations of
Shannon'’s original definition of information redundancy. In contrast with algorithmic complexity, we demon-
strate that algorithmic redundancy is not sensitive to message length or to observatiotsacglkng fre-
guency when stationary systems are examined.
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I. INTRODUCTION entropy[12] and effective measure complexit§], are sen-
sitive to both the number of distinct subgroupsgrds in the
While there are many different kinds of complexity mea- message and the frequency of their appearance. In our no-
sureq 1-4], they all share the common property of providing menclature we describe a complexity measure as being non-
a quantitative assessment of the structure of a symbol serobabilistic if it depends only on the number of distinct
guence. Complexity measures complement an examinatiowords and is insensitive to the frequency of their appearance.
of the symbol distribution by identifying sequence-sensitiveExamples include topological entrofyt3] and the previ-
patterns that would be destroyed by a random shuffle. In ausly cited forbidden word complexities. Formula-based
previous publication5], we have constructed an eight celled measures of complexity are those like topological entropy,
taxonomic classification of complexity measures based on metric entropy, and effective measure complexity that can be
sequence of three dichotomous classifi€is:randomness expressed in an equation. An alternative is one that con-
finding vs rule finding(ii) probabilistic vs non-probabilistic, structs a model of the symbol sequence, for example, a series
and(iii ) formula based vs model based. Randomness findingf instructions that permit the reconstruction of the original
measures of complexity give the highest value of complexitysymbol sequence, and assigns a value of complexity based
to random sequences. The original definitions of symboliaon the size of the model. Examples of model-based complex-
complexity introduced by Kolmogoro{6] and Chaitin[7] ity include Kolmogorov-Chaitin complexity6,7] and the
were of this type. An alternative assessment of complexity is.empel-Ziv complexity[14].
one that attempts to establish a quantitative characterization This contribution focuses on a specific class of complex-
of the rules used to generate a symbol sequence. Examplesitf measure, the algorithmic complexity that in this classifi-
rule finding measures of complexity include forbidden wordcation system would be an example of a non-probabilistic,
complexity[8—10], effective measure complexif], ande- model based, randomness finding measure of complexity.
machineq 11]. Two representative examples are considered. The first is the
Probabilistic measures of complexity, for example, metricLempel-Ziv measure of complexitjl4]. The second, the
context free grammar complexity, has been described else-
where[15,16. In both cases an upper bound of the complex-
*Corresponding author. Clinical Research Center, Building 52jty of a symbol sequence is found by first constructing an
Norristown State Hospital, 1001 Sterigere St., Norristown,instruction sequence that can reproduce the message. The
PA 19401-5397. Email address: Paul.E.Rapp@Drexel.edu complexity is based on a measure of the length of that in-
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struction set. A brief didactic presentation of each definition“0” is assigned if the number is less than or equal to the
is given in the appendixes. median value, and symbol “1” is assigned if the number is
Viewed in isolation, a single measure of algorithmic com-greater than the median. In this example, the median and the
plexity provides limited information. A normalization that mean are essentially identical. However, it should be noted
could facilitate comparisons between different measurementhat in those instances where they are significantly different,
would be helpful. The process of constructing an effectivea partition about the median should be used rather than a
normalization of complexity turns on two problems. First, aspartition about the meaf20].
will be shown presently, the value of algorithmic complexity ~ The Henon data sets used to generate the results in Fig. 1
increases with the length of the message. An improved meawere generated from the Hen system using different initial
sure should be invariant with respect to message length pr@onditions and the parameteas- 1.4 andb=0.3,
vided that the underlying dynamical process was stationary

throughout the observation period. Second, the complexity of Xe+1=1— axt2+yt ,

symbol sequences constructed from observations of continu-

ous dynamical systems is sensitive to sampling frequency. Yi+1=bX;.

This problem should also be addressed by a successful renor- , ,

malization. As in the previous case, a binary symbol sequence was gen-

We are, therefore, seeking a measure that would retain tHefated about the median. _
essential features of algorithmic complexity in providing a _1N€ Lorenz data sets were generated from the ordinary
sequence-sensitive measure of randomness, but would ngiferential equation

depend on how long or how often observations are made. dx/dt=10(x—y)
Finally, a means of assessing the uncertainty of the measure- ),
ment would be of particular value in the analysis of experi- dy/dt=x(28—2)—y,
mental data.

dz/dt=xy—(8/3)z.
Il SENSITIVITY TO EPOCH LENGTH The system was integrated with a sixth order Runge-Kutta-
Figure 1 shows the values of complexity obtained fromHuta algorithm[21] with a step length ofAt=0.01.

three model systems. In the first example, random numbers The values of complexity displayed in Fig. 1 were ob-
uniformly distributed on(0,1) were calculated with a Park- tained by averaging five determinations generated from dif-
Miller random number generator that incorporated a Baysferent initial conditions. The mean values are displayed with
Durham shuffle[17-19. The resulting sequence of real the corresponding standard deviations, which were typically
numbers is reduced to a binary symbol sequence by partbn the order of 2% of the value of complexity. For both the
tioning the random numbers about the median. A symbolLempel-Ziv complexity and the context free grammar com-
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plexity, algorithmic complexity is seen to increase monotoni-tion is obtained by observing the next symbol in the se-
cally with data set size. The two measures were found to bguence since it is always thjéh symbol, andRg=1.

highly correlated. The Pearson linear correlation coefficient A generalization of the idea of redundancy to sequence-
is R=0.998. The Spearman’s rank correlationrjs=0.994  sensitive measures of complexity is implicit in the content of
and the Kendall nonparametric correlation coefficientris Kolmogorov’'s 1965 papef6]. A sequence-sensitive redun-

=0.963. dancyRk can be defined by:

The simplest possible normalization for data set size
would be obtained by dividing the value of complexity by Rk=1-Cp/Ly,
the length of the messadg,. The results in Fig. 2 show that ] o )

An alternative can be constructed by generalizing théchavoya-Aceves, Garcia de LeBarrera, and dieze
definition of redundancy introduced by Shanri@z]. Sup- Montaro [23] defined a redundancy for complexity measure-
pose a message bf, symbols is constructed from an alpha- MeNts as
bet of N, characters wherg, is the probability of theith

character. The entropy of the messade,, is defined as R=1-Cp/Cp,

N, where
Ho,=—2> pilog,p:.
m= " & PiloGzP Clh=min{Lp [3(Ly+1)+2N2]).

The maximum entropy is obtained when the sequence dHowever, wherl,, is much greater thaN, , as is the case in
symbols is equiprobable, thatjis= 1/N, for all i. Hmay, the  the examples considered in this pap&f,~L/2, and the
maximum possible value of entropy, is given Wy,.x  Chavoya-Aceves definition is essentiaRy . Ry as a func-

=log; N, tion of data set size is shown in Fig. 3 for both Lempel-Ziv
Shannon defines informational redundarfityas complexity and the context free grammar complexity. As
expected given the results presented in FigRg,changes
Rs=1—Hm/Hmax- with data set size. It is also important to note tRatis not

equal to zero for random numbers, which is contrary to the
If pj=1/N, for all i, thenH,,=H ., andRgs=0; that is, spirit of the definition of redundancy.
when the sequence is equiprobable, the redundancy of the For the specific case of the Lempel-Ziv complexity mea-
message is zero. The observation of each symbol in the mesure, an additional possible normalization should be consid-
sage is informative. Alternatively, suppopg=1 for somej ered. Lempel and Ziy14] show that their definition of com-
and thatp;=0 for alli+j. In this caseH,,=0; no informa-  plexity, denotedC, ,, is bounded by,
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Npata As before,C,, is the complexity of the original messadeg
(1— £0)100, Npus is the complexity of a randomly shuffled equiprobable sym-
o b bol sequence of the same length whpre 1/N,. The sub-

where to clarify notation we sei=N,, the number of sym- script “0” is used to indicate that this is the complexity of a

CLZ< Nl:

bols in the alphabet. random shuffle surrogate data set. As defined here, surro-
gates are not constructed by simply shuffling the original
en=2{1+l0g, 109,(@Npatd }/10g, Npata symbol sequence. The distribution of the original sequence is

not necessarilyp;=1/N,. (Cy) denotes the mean value of
complexity found by averaging values from several indepen-
Zhanget al.[24]. C_z/N; is shown in Fig. 4 and is seen to dently constructed su_rrogates. The number of surrogate_s that
be sensitive to the value ®pye. shquld be useq tp estimaiy dgpends on the signal-to-noise

A more successful definition of redundancy defined byratio of the original data. This question can be addressed
analogy with Shannon'Rg is empirically by increasing the number of surrogates until a
stable value ofR; is obtained. Test calculations indicated
Ry=1—C.,/{Cp). that for the data sets examined in this paper, the values of

If Npaa is large, ey is small and a simplified normalization
againstNpaa/109, Npata Can be considered, as was done in
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redundancy obtained with ten surrogates were within 1% ofrhus, the first of our objectives has been met. The definition
the values obtained with 50 surrogates. The values presentedl R, also produces results consistent with our intuitive
here were obtained with ten surrogates. Measures of consense of the word redundancy. Random sequences have zero
plexity such as algorithmic complexity give the highest val-redundancy. Every observation of a random sequence pro-
ues to random sequencd<,) is, therefore, an empirical vides information. In contrast, the redundancy of a constant
estimate ofC,,,, and R, is a sequence-sensitive generaliza-sequence is 1. A constant symbol sequence is completely
tion of Rs. redundant. Lorenz and iHen show intermediate values with

It is possible to estimate the uncertaintyRyf as below:  the Henon system having a lower redundancy; that is, it ap-

pears more random. This is also consistent with our expec-

dRy\? dRy \? Acﬁ1 sz tations since the Hen system is a map that rapidly distrib-
ARS=|—-=| ACi+| =~ | ACi=7~3+ =2 AC] i i int i i
o=\ 9C,, M| 9(Co) 07 (CH2 T (CiT T utes itself over its attractor. Each point is typically well

displaced from its predecessor. In contrast, the Lorenz sys-
where AC, is the standard deviation of averaged surrogatéem is a flow; displacement on the attractor with each suc-
complexities found when calculating,). In Fig. 5,AC,,  Cessive observation is smaller.
can be estimated empirically by multiple determinations of
C,, from different initial conditions. In some instances, for
example, the examination of experimental data, multiple de-
terminations may not be available. In those caggs,, can The calculations presented in the previous section indicate
be approximated by determinir@,, the complexity of the thatR, is essentially constant for stationary systems as the
first half of the message, andg, the complexity of the number of data pointsthe observed epoghs increased.
second half of the message. An approximationA@t,, is  However, during the examination of continuous wave forms,

IIl. SENSITIVITY TO SAMPLING INTERVAL

given by for example, computed solutions of the Lorenz equations or
experimental measurements of fluid flow, there is another
AC. = |Ca—Ca issue. The investigator faces an operational question: how

™ (|Cal+|CgHI2T™ often should | sample the signal? WhiRy provides an ef-

fective normalization for epoch lengtgiven assumptions of
where, as beforeC,, is the complexity of the original mes- stationarity, it is sensitive to the sampling frequency. This is
sage. shown in Figs. 6 and 7. The Lorenz system was integrated at
R, as a function of data set size is shown for the thredlifferent sampling intervaléAt=0.01, 0.02, 0.04, and 0.08
model systems in Fig. 5. The results obtained with symbolThe corresponding number of data points in each data set is
sequences consisting of a single repeated symbol are al8192, 4096, 2048, and 1024. Thus the epoch length is the
shown and labeled as “Constant.” It is seen tH§ is  same in all four cases. When compared across constant ep-
largely unchanged as the size of the data set is increasedchs, complexity is seen to decrease with(Figs. 6 and 7,
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top panels This might suggest that the dynamical behaviorshould be. As\t increases, the chaotic Lorenz system deco-
of the observed data is less disordered for larger valuetof rrelates and the relationship between successive observations
But in fact, decreasing complexity is a result of decreasingpecomes more disordered.

number of data points. The second panel of Figs. 6 and 7 Normalization for both sampling interval and data set size
showsR, as a function ofAt. Redundancy decreasesfs can be constructed by using surrogates of lerigth(the
increases; that is, the observed symbol sequence becomlesgth of the original messagthat reflect the time scale of
more random adt increases. Upon reflection, this is as it the observational process. The easiest way to do this is with
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random phase surrogates, which are also referred to as Algoull hypothesis holds that the original signal is indistinguish-
rithm 1 surrogateg25,26. Random phase surrogates areable from noise. In the case B, the null hypothesis holds
constructed by calculating the Fourier transform of the origi-that the original signal is indistinguishable from linearly fil-
nal time series, randomizing the phases and calculating thered noisd25,26|.

inverse transform. The inverse transform is the surrogate.

The surrogates and the original time seriesf haye the same IV. SENSITIVITY TO NOISE
power spectra, and thus by the Wiener-Khinchin theorem,
they have the same autocorrelation function. As indicated in the Introduction, both of the complexity

The complexity of random phase surrogates is calculatetheasures used in these computations are randomness-
in the same manner as the complexity of the original timeseeking measures. That is, they give the highest values of
series. The surrogate is partitioned into a symbol sequendeg@mplexity to randomly constructed sequences. Therefore
using an alphabet dfl, characters. The partition is about the the complexity is expected to increasthe redundancy
median for the casl,= 2. An equiprobable generalized me- should decreageas the stochastic component of a signal is
dian partition(p;=1/N,, for all i) is used ifN,>2. Let(C,) increased.
denote the mean value of complexity obtained from Algo- This expectation is verified in the calculations presented
rithm 1 (random phasesurrogates. The random phase redun-in Fig. 8. Two of the three model systems considered in the

dancy is defined as previous sections, the Lorenz equations and thaddedif-
ference equations, were used. Normally distributed noise
Ri=1-C.,/{Cy). generated by the previously described Park-Miller random

number generator of zero mean was added to the original

The value of complexity obtained with a random phase sursignals. The variance of the added noise was adjusted to give
rogate is the maximum value of complexity compatible with signal-to-noise ratios of 10, 5, and 0 dB. Ten realizations
the original signal’s spectrum. The third panel of Figs. 6 andusing different seeds to the random number generator were
7 showsR; as a function of sample interval. It is insensitive produced for each case. The figure displays the average of
to changes in both data set size and sampling frequency. these ten determinations. The redundancy decreases as the

Recall that algorithmic complexity is a measure that givessignal-to-noise ratio decreases. The invariance of redundancy
the greatest value of complexity to random sequenceswith respect to data set length, however, is not affected by
Therefore, in genera|Cy) is greater thaC,), and it fol-  noise.
lows thatRy>R; . This is confirmed for the specific example
of the Lorenz system by comparing the second and third
panels of Figs. 6 and 7. The introduction®f indicates that
there is no absolute definition of algorithmic redundancy. The results suggest that for stationary systems, appropri-
Redundancy can only be defined with respect to the undemtely defined versions of algorithmic redundancy are robust
lying null hypothesis of the surrogates. In the cas®gfthe  to changes in message length and sampling frequency. Re-

V. CONCLUSIONS
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dundancy may therefore be a useful measure of the intrinsiehich is called the production history & The symbol®
structure of a symbol sequence that facilitates comparisondenotes the concatenation operator. Thewords H;(S)
between cases. This is particularly important for longitudinal=S(h;_;+1,h;) i=1,2,...m, are called the components &f
studies in which the object is to assess long term changes ifhe complexityc(n) is the positive integer equal to the num-
dynamical systems. ber of substrings, or components, required by this process.
Understanding the procedure used by Lempel-Ziv to produce
a unique production history constitutes an understanding of
their algorithm.

We would like to acknowledge support from the U.S. De- As was stated earlier, this process follows a left-to-right
partment of Education Contract No. H235J000001 to thescan of a sequencg& A substringS(i,j) is compared to the
Krasnow Institute, from the Janssen Pharmaceutica Researghcabulary that is comprised of all substrings®tp to j
Foundation, and from the Bristol-Myers Squibb Pharmaceu—1, that is, V(S(1,j—1)). If the substring is present in
tical Research Institute. We would also like to acknowledgeV(S(1,j—1)), then S(i,j)—S(i,j+1), and V(S(1,j—1))
the encouragement and leadership of R. C. Josiassen, Diree+V(S(1,j)), and the process repeats. If the substring is not
tor of the Arthur P. Noyes Research Foundation at Norrispresent, then a dot is placed afflj) to indicate the end of
town State Hospital. MAJ-M thanks CONACYT, Mexico a new componen§(i,j)—S(j+1,j+1) that is the single
(Project: 32201-Efor partial support. symbol in the j+1 position, and V(S(1,j—1))
—V(S(1,j)), and the process continues. This parsing opera-
tion begins withS(1,1) and continues untjl=n, wheren is
the length of the symbol sequence.

According to Kolmogorov, the algorithmic complexity of ~ Consider the following sequence of zeros and ones:

a sequence of symbols is given by the number of bits of the

shortest computer program that can generate that sequence S=0100011010010011101100.
[6]. However, a general algorithm that determines such gye pegin with S(1,1)=0, and V(S(1,0)={}. Since the
program cannot be givef27,7). Instead, Lempel and Ziv  gpsiringS(1,1) is not found in the vocabulary(S(1,0)),

developed a complexity measure that does not necessariye place a dot after the first elemet®(1,1)—S(2,2)=1,

calculate the length of the shortest program that generates 3andV(S(1,0))— V(S(1,1))=1{0}. After this first step our se-
given symbol sequence, but rather a numt{er), which is a quence becomes

useful upper bound of this lengfti4,28,29.
The Lempel-Ziv approach associates the complexity of a S=0-100011010010011101100.
symbol sequence with the sequential appearance of new pat-

temns within that sequence. They present an estimate of tHadoW S(2.2)=1, which Iis notdfour;td inh the vogablulary
complexity of a finite sequence from the point of view of a ¥ (V(1,1))=1{0}, so we place a dot after the second element,

learning machine that, as it scansnadigit sequenceS S(Z’ﬁ.)ﬂs(&?’()j' andV(S(l,l))HV(St()l,Z))={0,1,0]}. Af-
=s,5,--s, from left to right, adds a new word to its '€ INIS Second step our sequence becomes

memory every time it encounters a substring not previously S=0-1-00011010011101100.

observed. The size of the compiled vocabulary, and the rate

at which new words are encountered, serve as the basis & 3,3)=0, is found inV(S(1,2)), thereforeS(3,3)— S(3,4)

their complexity measure. and V(S(1,2))—V(S(1,3))={0,1,01,10,01p S(3,4) is not
Let us introduce some definitions that are needed for thi§ound in the vocabulary so we place a dot after the fourth

discussionA denotes the alphabet @ék., the symbols that elementS(3,4)— S(5,5) andV(S(1,3))—V(S(1,4)). At the

are used to compose the sequéen&denotes a finite length completion of our parsing process we get

symbol sequence formed b4, whose complexity is to be _

measuredS(i,j) indicates a substring @ that starts at po- $=0-1-00-011-01001:00111:01100 .

sition i and ends at positiof, that is, wheni<j, S(i,j) (A dot is always placed after the last element in the symbol

=$;,Si+1,-°S; and wheni>j, S(i,j)={}, the null set; sequence. The Lempel-Ziv complexity in this example

V(S) the vocabulary of a sequenc® It is the set of all would bec(n)=7.

substrings, orwords S(i,j) of S (i.e., S(i,j) for i

=1,2,...n; j=i). For example, LetA={0,1}, and S APPENDIX B: THE CONTEXT FREE GRAMMAR

=001, we then have COMPLEXITY

This measure was constructed by Ebeling and” deme
Montaro [15]. The description given here follows the pre-
) _ ) ) ) sentation in Rappt al.[30] The definition is described most
The Lempel-Ziv algorithm is essentially the parsing of theeffectively by considering a specific application. In this ex-
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APPENDIX A: THE LEMPEL-ZIV COMPLEXITY

V(S)=10,1,00,01,001

original sequenc& into ample a binary symbol alphabet is used, but the definition is
applicable to alphabets of arbitrary size. Consider symbol
H(S)=S(1,hy)®S(hy+1,hy) sequenceM
©S(hy+1hz) - ®S(hp-1+Lhy), M =0100011010010011101100.
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The sequence is searched for repeated symbol pairs. The pdine search for repeated pairs has been exhausted. In the

0 1 is repeated six times. A new symlept 01, is defined
and substituted into messalyeresulting in its compression,

a=01,
M =a00ala0a0allal00.

M is again scanned for repeated pairs. The symbola@iis
repeated three times and is replaced by synihol

a=01,
b=a0,

M=DbOalbballallO.

The symbol paial is repeated three times in the restatement; |

of M. It is replaced by symbat,

M =b0Ocbbclcl0.

general case, the symbol sequence would be searched for
repeated triples, which would be replaced by new symbols.
Repeated four-letter elements would then be replaced, and so
on. In the case of the present example, there are no higher
order repeats. The compression has converged.

Using the definition of, b, andc and the restatement of
M, it is possible to reconstruct the original sequence exactly.
In this example, the complexity of the original message is
equal to the number of elements in its restatement. Symbols
a, b, andc each consist of two symbols. Messdgeconsists
of ten symbols. Thus, using this definition of complexity,

(Complexity of M)=2+2+2+10=16.

Ebeling and Jimeez-Montao [15] consider generaliza-

ns to include messages in which a single symbol is re-
peated three or more times in a row. When this occurs, the
sequence of repeated symbols is replaced by its exponential
representation. For exampkea a abecomes®. Under their
definition, the exponent contributes to complexity logarith-
mically. The sequenca® would contribute one bit in recog-
nition of symbola and log 4 in recognition of the exponent

4. Additional didactic examples are given in the earlier lit-
erature[30,31].
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